Contents

	Page
Summary	
Summar y	
Chapter 1 Purpose and Need	1
Purpose and Scope of Study	1
Description of the Area	1
History	2
Salinity Concentration Problems	3
Water Level Problems	4
Authority	5
Participants	6
Relationship to Other Projects	7
iveracioniship to other riogetts	•
Chapter 2 Alternative Development Process	9
Public Involvement	10
Development Process	10
Target Salinity: 40 ppt	11
Target Water Surface Elevation: - 232 feet m.s.l	11
Proven Technology	12
Salinity Model	13
Evaporation Rates	13
Precipitation Rate	14
Drainage to the Sea	14
Salinity and Sea Elevation Goals	15
Model Behavior	15
Cross-Reference Table to 1997 Report	16
Chapter 3 Costs of the Alternatives	19
Chapter 5 Costs of the Atternatives	13
Chapter 4 Diked Impoundment Alternatives	25
Description of the Concept	25
Background	26
Diked Impoundment Alternatives	27
Static Dike Design	31
Seismic Dike Design	34
Earthfill Material Sources	38
Dike Construction Schedule	38
Chantan 5 Dumn Out / Dumn In Altamatica	20
Chapter 5 Pump-Out / Pump-In Alternatives	39 39
Salinity and Water Surface Level Interaction	
Design Considerations	40
Pump-Out / Pump-In Water Conveyance Functions	
Water Import Assumptions	41
Power Recovery Potential	42

Contents (cont.)

	Page
Chapter 5 Pump-Out / Pump-In Alternatives (continued)	
Design Considerations (continued)	
Saline Water Concerns	43
Pipelines Only Design	43
Type of Pipe	44
Discarded Components	44
Evaporation Lakes and Ponds	44
Groundwater for Salton Sea Restoration	45
Pipeline Routes	48
Pump-In Sources	49
Pump-Out Locations	51
Evaporation Ponds at Palen Dry Lake	52
Complete Designs	52
Similar Designs	56
Similar Designs	30
Chapter 6 Water Treatment Alternatives	57
Reverse Osmosis Desalting Plant With Pump-Out / Pump-In	57
Analyses	58
Pilot Plant	59
Salinity and Elevation of the Sea	60
Conclusion	61
Solar Salt Gradient Pond / MED Desalting Plant	01
With Pump-In / Pump-Out	61
Proposal Description	61
Analyses	63
Pilot Plant	64
	65
Salinity and Elevation of the Sea	65
Conclusion	03
Chantan 7 Navy Combination Altamaticas	67
Chapter 7 New Combination Alternatives	67
Solar Pond / Shipping Channel / Canals / Desalting Facility	67
Gulf of California Pump-In / Pump-Out / Diking / Treating	00
Inflows	68
Phased Approach—Phase One: Salt Stabilized,	00
Phase Two: Pump-In Later	68
Salt Concentrating Ponds	69
South End Off-Shore Dike	70
	~ 1
Chapter 8 Alternatives Considered for Elimination	71
Original 54 Alternatives	71
New Alternatives	87
Chantan O. Analysis of Effections	0.5
Chapter 9 Analysis of Effectiveness	95
Pump-Out / Pump-In Alternatives—Salinity Model Results	95
Diked Impoundment Alternatives—Salinity Model Results	98
Bibliography	103

Tables

		age
1	List of alternatives and cross-reference location	17
2	Preappraisal costs for the Salton Sea restoration	20
3	Basins capable of supplying 30,000 acre-feet annually	
4	for 20 years	46
•	discharge and pipe size	53
5	Pump-out / pump-in alternatives simulation results	97
6	Diked impoundment alternatives simulation results	99
	Figures	
	<u> </u>	Page
		age
1	Historical salinity and elevation through time	. 5
2	Pipeline field costs as a function of discharge	
	flowing in one direction	21
3	Construction field costs are displayed on the horizontal axis	
	and the annual costs of operation, maintenance, repair, and	00
4	energy on the vertical axis	22
4	The same field costs and operation, maintenance, replacement, and energy costs as in figure 3 are displayed on the horizontal and vertical evia but only for the leaves cost alternatives.	
	and vertical axis, but only for the lower cost alternatives—a small portion of those in figure 3	23
5	The construction field cost decreases as the target salinity	
	increases	24
6	Location of 30-, 40-, and 50-square-mile impoundments	28
7	Location of 47- and 127-square-mile and phased	00
0	impoundments	29
8	Cross sections show different foundation elevations in	33
9	Sea bottom	
10	Map of earthquakes in southern California with a	34
10	magnitude 4.5 and greater follows	34
11	Cross section showing earthquake design	36
12	Sketch shows plan earthquake design	37
13	Pipeline routes to and from Salton Sea follows	48
14	Sea salinity at various pump-out rates in various years	
	in the future	55
15	Reverse osmosis desalting plant with pump-in / pump-out	57

Figures (cont.)

		Page
16	Salinity model results of reverse osmosis desalting plant with 170,000-acre-foot pump-out and 60,000-acre-foot pump-in at 0.45 ppt with 1.346-million-acre-foot drainage inflow at 2.8 ppt	60
17	Solar salt gradient pond / MED desalting plant with pump-in/pump-out	62
18	Salinity model results of solar salt gradient pond / MED desalting plant with 58,600-acre-foot desalted replacement water at 20 ppm with 1.346-million-acre-foot drainage inflow at 2.8 ppt	65
	natives mentioned in figure 19 and later are the alternative number nown on table 2; all graphs follow page 101	S
19	Baseline conditions, no pump-out or pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt	
20	Alternative 1 water exchange from Camp Pendleton 700,00-acre-foot pump-out with 600,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt	
21	Alternative 4 water exchange from Point Loma at 1.75 ppt— 250,000-acre-foot pump-out with 153,000-acre-foot replacement with 1.346-million-acre-foot drainage inflow at 2.8 ppt	
22	Alternative 5 water exchange from Hyperion at 0.925 ppt—250,000-acre-foot pump-out with 153,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt	
23	Alternative 6 water exchange from Yuma at 4 ppt— 250,000-acre-foot pump-out with 153,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt	
24	Alternative 11 water exchange at Camp Pendleton at 35 ppt—400,000-acre-foot pump-out with 303,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt	
25	Alternative 14 water exchange at Point Loma at 1.75 ppt— 170,000-acre-foot pump-out with 73,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt	
26	Alternative 15 water exchange at Hyperion at 0.925 ppt— 170,000-acre-foot pump-out with 73,000-acre-foot pump-in with 1.346-million-acre-foot drainage inflow at 2.8 ppt	

- 27 Alternative 16 water exchange at Yuma at 4 ppt—
 170,000-acre-foot pump-out with 73,000-acre-foot pump-in
 with 1.346-million-acre-foot drainage inflow at 2.8 ppt
- 28 Alternative 21 water exchange with pump-out only— 100,000-acre-foot pump-out with 1.346-million-acre-foot drainage inflow at 2.8 ppt
- 29 Conservation baseline 1.0-million-acre-foot drainage inflow at 3.5 ppt
- 30 Alternative 23 water exchange with conservation—
 205,000-acre-foot pump-out with 405,000-acre-foot
 pump-in at 4 ppt with 1.0-million-acre-foot drainage
 inflow at 3.5 ppt
- 31 Variable impoundment at 7.83-percent surface area or 30 square miles with 1.346-million-acre-foot drainage inflow at 2.8 ppt
- 32 48-square-mile impoundment; pump-back activated to maintain Sea at 35 ppt with 1.346-million-acre-foot drainage inflow at 2.8 ppt
- 33 142-square-mile impoundment; pump-back activated to maintain Sea at 35 ppt with 1.346-million-acre-foot drainage inflow at 2.8 ppt
- 34 Variable impoundment at 7.83-percent surface area or 30 square miles with 1.0-million-acre-foot drainage inflow at 3.5 ppt
- 35 48-square-mile impoundment with water conservation with 1.0-million-acre-foot drainage inflow at 3.5 ppt
- 36 142-square-mile impoundment; pump-back to maintain Sea at 35 ppt with 1.0-million-acre-foot drainage inflow at 3.5 ppt